

# Importance of a Subbase

The subbase of a driveway is arguably the most crucial aspect. It provides a stable foundation underneath your final wearing course (i.e CORE DRIVE). A properly prepared subbase distributes the weight of vehicles, preventing rutting or sinking. Without a proper subbase, the driveway can become uneven and may eventually fail, leading to costly repairs and a reduced lifespan. The two key factors to consider with a Subbase are the depth and the material.

#### MOT TYPE 1



The most commonly used material for subbases in the UK, also referred to as Scalpings. The mix in size of aggregate (40mm to down to dust) provides an incredibly strong foundation once compacted. However it is not considered a Permeable subbase material and therefore not suitable if a SuDS complaint build up is required.

### 4-20mm Clean Aggregate



Similar to MOT Type 1, this is typically a Limestone or Granite aggregate. The key difference being that the 'fines' have been removed to increases its porosity making it ideal for SuDS complaint Build ups.

## **CBR % VALUE INDICATOR**



Use the table opposite to determine the CBR% value of your subgrade once you have carried out either the tactile, visual or mechanical test.

#### INTENDED TRAFFIC LOAD



2 Next, use this table to help you identify your intended traffic load according to vehicle size and frequency.

## SUB BASE CALCULATION



Lastly, use the CBR% value and traffic type you have identified to calculate the depth of subbase required for your project.

|             | IDENTIFYING FACTOR                   |                                      |                          | STRENGTH |           |
|-------------|--------------------------------------|--------------------------------------|--------------------------|----------|-----------|
| CUNSISTENCY | Tactile (feel)                       | Visual<br>(observation)              | Mechanical<br>(test) SPT | CBR %    | CU kn/m2  |
| VERY SOFT   | Hand sample squeezes through fingers | Man standing will sink<br>>75mm      | < 2                      | <1       | < 25      |
| SOFT        | Easily moulded by<br>finger pressure | Man walking sinks<br>50-70mm         | 2 - 4                    | Around 1 | Around 25 |
| MEDIUM      | Moulded by moderate finger pressure  | Man walking sinks<br>25mm            | 4 - 8                    | 1-2      | 25 - 40   |
| FIRM        | Moulded by strong finger pressure    | Utility truck ruts<br>10-25mm        | 8 - 15                   | 2 - 4    | 40 - 75   |
| STIFF       | Can't be moulded but can be indented | Construction vehicle<br>ruts by 25mm | 15 - 30                  | 4 - 6    | 70 - 150  |

| Vehicle Type →                           | Domestic<br>vehicles | Commercial<br>vehicles | Heavy goods<br>vehicles |
|------------------------------------------|----------------------|------------------------|-------------------------|
| Traffic Frequency<br>↓                   |                      |                        |                         |
| <b>Low Frequency</b><br>< 10 a day       | Light traffic        | Medium traffic         | Heavy traffic           |
| <b>Medium Frequency</b><br>10 - 20 a day | Medium traffic       | Medium traffic         | Heavy traffic           |
| High Frequency<br>>20 a day              | Heavy traffic        | Heavy traffic          | Heavy traffic           |

| CBR (%) STRENGTH OF<br>EXISTING SUBGRADE | Light traffic | Medium traffic | Heavy traffic |  |
|------------------------------------------|---------------|----------------|---------------|--|
| >6                                       | 100mm         | 110mm          | 120mm         |  |
| = 4 >6                                   | 100mm         | 125mm          | 150mm         |  |
| = 2 >4                                   | 135mm         | 165mm          | 200mm         |  |
| =1>2                                     | 260mm         | 330mm          | 400mm         |  |

The table indicates typical sub base thicknesses required depending on the subgrade CBR value and intended traffic load. Please note this is intended as a general quide in accordance with BS7533.

For further details on permeable paving design please refer to BS7533 Part 13; for installation refer to Part 1. The design for build up should satisfy two parts - firstly to support the intended traffic load and secondly to manage surface water.